A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data
نویسندگان
چکیده
Surface depressions are abundant in topographically complex landscapes, and they exert significant influences on hydrological, ecological, and biogeochemical processes at local and regional scales. The increasing availability of high-resolution topographical data makes it possible to resolve small surface depressions. By analogy with the reasoning process of a human interpreter to visually recognize surface depressions from a topographic map, we developed a localized contour tree method that is able to fully exploit high-resolution topographical data for detecting, delineating, and characterizing surface depressions across scales with a multitude of geometric and topological properties. In this research, we introduce a new concept ‘pour contour’ and a graph theory-based contour tree representation for the first time to tackle the surface depression detection and delineation problem. Beyond the depression detection and filling addressed in the previous raster-based methods, our localized contour tree method derives the location, perimeter, surface area, depth, spill elevation, storage volume, shape index, and other geometric properties for all individual surface depressions, as well as the nested topological structures for complex surface depressions. The combination of various geometric properties and nested topological descriptions provides comprehensive and essential information about surface depressions across scales for various environmental applications, such as fine-scale ecohydrological modeling, limnological analyses, and wetland studies. Our application example demonstrated that our localized contour tree method is functionally effective and computationally efficient.
منابع مشابه
Multivariate topology simplification
Topological simplification of scalar and vector fields is wellestablished as an effective method for analysing and visualising complex data sets. For multi-field data, topological analysis requires simultaneous advances both mathematically and computationally. We propose a robust multivariate topology simplification method based on “lip”-pruning from the Reeb Space. Mathematically, we show that...
متن کاملHighway Extraction from High Resolution Aerial Photography Using a Geometric Active Contour Model
Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis...
متن کاملForest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملExtracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Geographical Information Science
دوره 29 شماره
صفحات -
تاریخ انتشار 2015